A new evolutionary paradigm for the Parkinson disease gene DJ-1.
نویسندگان
چکیده
The DJ-1 gene is extensively studied because of its involvement in familial Parkinson disease. DJ-1 belongs to a complex superfamily of genes that includes both prokaryotic and eukaryotic representatives. We determine that many prokaryotic groups, such as proteobacteria, cyanobacteria, spirochaetes, firmicutes, or fusobacteria, have genes, often incorrectly called "Thij," that are very close relatives of DJ-1, to the point that they cannot be clearly separated from the eukaryotic DJ-1 genes by phylogenetic analyses of their sequences. In addition, and contrary to a previous study that suggested that DJ-1 genes were animal specific, we show that DJ-1 genes are found in at least 5 of the 6 main eukaryotic groups: opisthokonta (both animals and fungi), plantae, chromalveolata, excavata, and amoebozoa. Our results thus provide strong evidence for DJ-1 genes originating before the origin of eukaryotes. Interestingly, we found that some fungal species, among them the model yeast Schizosaccharomyces pombe, have DJ-1-like genes, most likely orthologous to the animal genes. This finding opens new ways for the analysis of the functions of this group of genes.
منابع مشابه
Mutations in DJ-1 are rare in familial Parkinson disease.
Mutations in DJ-1 (PARK7) are one cause of early-onset autosomal-recessive parkinsonism. We screened for DJ-1 mutations in 93 affected individuals from the 64 multiplex Parkinson disease (PD) families in our sample that had the highest family-specific multipoint LOD scores at the DJ-1 locus. In addition to sequencing all coding exons for alterations, we used multiplex ligation-dependent probe a...
متن کاملDJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease
DJ-1 is a multifunctional protein that plays an important role in oxidative stress, cell death, and synucleinopathies, including Parkinson disease. Previous studies have demonstrated that total DJ-1 levels decrease in the cerebrospinal fluid, but do not change significantly in human plasma from patients with Parkinson disease when compared with controls. In this study, we measured total DJ-1 an...
متن کاملParkinson disease protein DJ-1 converts from a zymogen to a protease by carboxyl-terminal cleavage.
Mutations in DJ-1 cause recessively transmitted early-onset Parkinson disease (PD), and oxidative damage to DJ-1 has been associated with the pathogenesis of late-onset sporadic PD. The precise biochemical function of DJ-1 remains elusive. Here, we report that DJ-1 is synthesized as a latent protease zymogen with low-intrinsic proteolytic activity. DJ-1 protease zymogen is activated by the remo...
متن کاملDJ-1 Interacts with and Regulates Paraoxonase-2, an Enzyme Critical for Neuronal Survival in Response to Oxidative Stress
Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identifie...
متن کاملDJ-1 Mutations are Rare in a Swedish Parkinson Cohort
Mutations in the PARK7 gene, DJ-1, have been reported to cause early-onset and familial Parkinson's disease (PD). The function of DJ-1 and how it contributes to the development of the disease is not clear today, but several studies report that DJ-1 is responsive to oxidative stress and important for the maintenance of mitochondria. We have screened three coding regions of DJ-1 (exon 2, 5 and 7)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2007